skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sugianto, Widianti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cell-free gene expression systems derived from bacterial lysates enable the expression of biosynthetic pathways from inexpensive and easily prepared DNA templates. These systems hold great promise for modular and on-demand bioproduction of valuable small molecules in resource-limited settings but are constrained in their long-term stability, reusability, and deployability. In this work, we demonstrate that multiple cell-free expressed enzymes can be co-immobilized in biocompatible hydrogels made from poly(ethylene glycol) diacrylate (PEGDA) with added glycerol for enhanced gel integrity. Using small-angle X-ray scattering (SAXS), we show that the mesh size of PEGDA-glycerol hydrogels is comparable to the globular sizes of many proteins and enzymes, which could be used for protein entrapment. We found that the combination between entrapment and chemical ligation of the enzymes was effective to retain proteins. By employing a method for direct fluorescence measurement from hydrogels, we found that proteins can be retained in PEGDA-glycerol for at least a week. By separating the cell-free enzyme expression from the immobilization step, we successfully fabricated enzyme-laden hydrogels with three heterologous cell-free enzymes for the bioconversion of pyruvic acid to malic acid, an industrially valuable and versatile precursor chemical. Both heterologous and endogenous enzymes from the lysate remain functional in photo-cross-linked hydrogels and can be reused for multiple biocatalytic cycles. Moreover, we also found that the immobilized enzymes exhibit up to 1.6-fold higher activity and 2-fold longer lifetimes than free enzymes in liquid reactions. These results could advance the deployment of cell-free synthetic biology because they show that reusable, stable, and durable multienzyme systems can be created using readily available materials and fabrication techniques. 
    more » « less
    Free, publicly-accessible full text available August 15, 2026
  2. Not AvailableFormate, a biologically accessible form of CO2, has attracted interest as a renewable feedstock for bioproduction. However, approaches are needed to investigate efficient routes for biological formate assimilation due to its toxicity and limited utilization by microorganisms. Cell-free systems hold promise due to their potential for efficient use of carbon and energy sources and compatibility with diverse feedstocks. However, bioproduction using purified cell-free systems is limited by costly enzyme purification, whereas lysate-based systems must overcome loss of flux to background reactions in the cell extract. Here, we engineer an E. coli-based system for an eight-enzyme pathway from DNA and incorporate strategies to regenerate cofactors and minimize loss of flux through background reactions. We produce the industrial di-acid malate from glycine, bicarbonate, and formate by engineering the carbon-conserving reductive TCA and formate assimilation pathways. We show that in situ regeneration of NADH drives metabolic flux towards malate, improving titer by 15-fold. Background reactions can also be reduced 6-fold by diluting the lysate following expression and introducing chemical inhibitors of competing reactions. Together, these results establish a carbon-conserving, lysate-based cell-free platform for malate production, producing 64 μM malate after 8 h. This system conserves 43 % of carbon otherwise lost as CO2 through the TCA cycle and incorporates 0.13 mol CO2 equivalents/mol glycine fed. Finally, techno-economic analysis of cell-free malate production from formate revealed that the high cost of lysate is a key challenge to the economic feasibility of the process, even assuming efficient cofactor recycling. This work demonstrates the capabilities of cell-free expression systems for both the prototyping of carbon-conserving pathways and the sustainable bioproduction of platform chemicals. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  3. null (Ed.)
  4. null (Ed.)